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Abstract

We present here a set of simple analytic

formulas for determining the propagation
characteristics of multilayer dielectric
structures, These formulas are particularly

useful for computer-aided design of dielectric
waveguides.

I. Introduction

Dielectric waveguides have been investigated
for the design of circuit components and devices
at high frequencies, particularly at millimeter
wave and optical frequencies., Basic wave
phenomena associated with this class of waveguides
have been well known and extensive numerical data
are available in the literature[l-4]. However,
because of mathematical difficulties in dealing
with transcendental dispersion relations, the
design of dielectric waveguides has to rely on
numerical procedures. Such an approach is time
consuming and does not provide direct physical
understanding of wave phenomena involved. The
recent resurgence of interest in integrated optics
has pushed the need of dielectric waveguides in a
large scale, and efficient algorithms for the
development of software for computer-aided design
are in demand. In this work we present a set of
simple analytic formulas for planar, multilayer
dielectric waveguides, Such a class of structure
is of practical importance on its own right; more

importantly, it also serves as a building block
for the analysis more complicated waveguide
structures.

A single dielectric layer in an uniform

environment is the simplest structure to be used
as a dielectric waveguide. We observed that the
dispersion relations for both TE and TM modes
suported by this simple structure can be cast in a
new form that is particularly simple and useful
for mathematical and physical interpretations of
the surface waves. Therefore, we choose the
formulation of this simple structure as a building
block for the analysis of more general dielectric
waveguides. This new mwmethod of analysis 1is
briefly reviewed first. The results are then
applied to the analysis and design of practically
interesting components and devices. For
simplicity, we restrict ourself here to the
fundamental TE mode; the results for the other
modes are similar but slightly more complicated.
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I1. New Method of Analysis

Consider a dielectric waveguide consisting of
a single dielectric surrounded by a uniform
medium, as shown in Fig. 1. The layer has a
dielectric constant ¢_. aud thickness t_ and the
surrounding has a dielectric constant e . The
dielectric constants, ¢_. and ¢ , are both Teal and
positive, with e¢_ > ¢ . Furhtermore, the time
variation of the form? exp(jwt), is implicitly
assumed throughout this work.

The dispersion relations for such a waveguide
structure are well known; they are wusually
expressed in terms of the tangent or cotangent
functions. For the fundamental TE mode, we have:
(n

q = p tan(p)

where the variables p and q are defined as:

_ _ 1/2
p =k (£./2)(ep = € p0) (2)
- 1/2
q =k (t/2)(e oo =€) 3)
_ 2
Ceff (kx/ko) )
Here, p is the transverse wavenumber 1in the
dielectric 1layer, q 1is the transverse decay

constant in the air region, k is the free-space
wavenumber, and ¢ is the effective dielectric
constant which is related to the surface-wave
propagation coustant, kX, by (3) and (4). For the
waveguide problem, the effective dielectric is the
most important quantity to be determined, and it
can be obtained from p or q via (2) or (3),
respectively, if either one of them is known. It
is noted that p and q satisfy the equation:

2 2 2

p +tq =a (5)

with

1/2 (6)

a= ko(tf/Z)(ef—ea)
Eq.(5) represents a circle of radius a which is
commonly refered to as the normalized frequency.
In the past, (1) and (5) are considered as a set
of coupled nonlinear equations to determine the
values for p and q, for a given normalized
frequency a. Graphically, the admissive values of
p are determined by the intersections a set of
modified tangent curves and a circle.
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It was shown that (1) and (5) can be combined
to yield a new form of dispersion relation as:

a cos(p) = p (7)

where a is the normalized frequency defined by
6). Such a new dispersion relations had been
obtained, but they were used only as an auxiliary
equation[4]. Because it is simpler in form and
offers many advantages over the old one, we shall
use it as the basis of the analysis of surface
waves, as illustrated below.

Geometrically, the roots of the new dispersion
relation, (7), may be interpreted as the
intersections of a cosine curve and a straight

line. To locate the roots, we have developed a
geometrical iteration procedure that are
monotonically and rapidly convergent. First of

all, the frequency spectrum is divided into two
regions, with the normalized dividing frequency
given by:
ay = n/2 -1 (8)

Specifically, a < a, defines the low-frequency
region, and a > a %efines the high-frequency
region. For the iteration procedure, the initial
point or the zeroth-order result is chosen as:

P, = P, = 2 for a < Py (9)

™ a
p =p, == —, forad>a (10)
° by a4 d
For a given structure and at a given

frequency, the initial point by either ome of the
last two formulas is very easy to determine. With
such an initial point fixed, the first—order
result is obtained from the iteration formula, as:

cos(po) + posin(po)

(11)

p_= 2
1 + a sin(po)

f

p./a (12)

n n

The expression for p_ given by (11) is the result
of the first iteratibn and f is then determined
from (12), if needed. When a more accurate result
is desired, the "old" values, p_and f_ , may be
replaced by the "new" values, p_~and f 5, and the
process may be repeated until a desired degree of
accuracy is achieved. This iteration process will
be particularly wuseful for the purpose of
laboratory design using a hand-held calculator.

As an illustration of the usefulness of the
present approach, we determine here the frequency
range for the operation of a single TE mode. The
first higher TE mode begins to propagate at the
normalized frequency: a = W/2. From (12), We
have: p_ = p_ = 0.9598. Substituting such a value
of p f%to 311), we obtain a more accurate value
for the dispersion root: p_ = 0.9341, as compared
to the exact value of p = 0.9340. Thus, the
frequency range of single mode-operation is given
by:
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0 < p<0.93 (13)
In terms of the effective dielectric constant,
(13) translates into:

€ < €off < 0.64ef + O.36£a

(14)

which defines the lower and upper bounds of the
effective dielectric constant for the lowest TE
mode, with all other higher modes below cutoff.
These upper and lower bounds hold generally for
the symmetric dielectric waveguide, regardless of
the waveguide parameters,

III. Application to waveguide modulator

A waveguide modulator consists of waveguiding
layer that 1is made of an electro-optical or
acousto~optical material[6]. The dielectric
constant of the layer can be externally controlled
to influence the phase of a guided wave. Of the
most practical interest is the sensitivity factor
of a waveguide modulator, which is defined as:

(15)
£ Teff £

The last expression in terms of the product of two
factors was obtained by using the square
relationship between a dielectric constant and the
corresponding index of refraction. Between the
two factors above, the former is bounded by:

n n
£ < f
eff %a

1<

(16)

n

Furthermore, taking the chain differentiations on
(1), (4), and (10), we obtain the derivative:

dEeff cosz(p)
g=———m—=1-
de 1 + p tan(p)
Here, the va&ue of p varies from 0 for a very low
frequency to n/2 for a very high frequency.
Evidently from the last equation, the factor g is
bounded by:

a7

0<g<1 (18)
Combining (15)~(18), we have the sensitivity
factor, s, bounded by:

0 < s< nf/na (19)

These results have been previously demonstrated by
means of numerical examples[6]. With the present
approach, the sensitivity factor can now be
conveniently investigated analytically.

IV. Design of uniform directional couplers

A directional coupler usually consists of two
identical constituent waveguides in a wuniform
environment, The layers have the dielectric
constant ¢ and the thickness t_, and the
separation getween the two waveguides is s. Such



a structure may be viewed as a composite waveguide
and the coupling of energy between the two
constituent waveguides can be interpreted as a
result of interference among the modes supported
by the composite structure. In practice, the
directional coupler is designed such that each
constituent waveguide supports only the Ilowest
mode, and the composite structure supports the two
lowest modes with opposite symmetries in field
distribution. Thus, the key step to the analysis
of the directional coupler is the determination of
the propagation constants of the modes supported
by the directional coupler as a composite
waveguide structure. Here, we derive a set of
new, though approximate, dispersion relations
which are particularly useful for the study of
directional couplers.

The directional coupler as a whole is
symmetric with respect to the plane z = 0. Such a
structure may be analyzed in terms of two bisected
sub-structures, as shown in Fig. 2, together with
their network representations. In other words,
the modes supported by such a composite waveguide
structure have either symmetric or antisymmetric
electric-field distribution. For practical
applications, the directional coupler is designed
such that each basic waveguides suppots only the
lowest mode, and the composite structure will
support the two lowest modes, one with a symmetric
electric-field distribution and the other with an
antisymmetric distribution. The coupling of
energy between the two basic waveguides forming
the directional coupler may be interpretted as the
interference of the two modes of the composite
structure, Thus, the key step to the analysis of
the directional coupler is the determination of
the propagatioin constants of the modes supported
by the composite structure.

By using the transverse-resonance technique,
the dispersion relation is written as:

Z (X +X,)
tan(k,t) = - ——2——dn (20)
Zfo - Xaan
where Z_ is the wave impedance of the layer, X_ is
the wave reactance of the air region, and X n is
the input reactance looking down at the fower

interface of the dielectric layer and is given by:

Xatan(kas), for SC bisection

i = (21)
Xacot(kas), for OC bisection
The dispersion relation, (20), determines the
effective dielectric constants, ¢ of the

3

With the two df??%rent input
(20) will yield the effective
dielectric constants for the symmetric and
antisymmetric modes. Under the most general
condition, the roots of such a dispersion relation
can be determined by numerical methods, and the
coupling characteristics of the structure can then
be analyzed.

directional coupler.
reactances in (21),

For practical design purposes, it is desirable

to have explicit formulas for the dispersion
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roots, particularly, for a nonuniform direction
coupler, including the transition regions at the
input and output ports. Based on the exact
dispersion relation, (20), we present here an
approximate method of analysis that will yield the
desired reults. The method is algebrac in nature,
and is facilitated by a new method of analysis for
the ©basic waveguide consisting of a single
dielectric layer in a uniform environment, as
described below.

We observe that (20) can be approximated by:

2ZfXave
tan(kft) = 5 (22)
Z2.Z2. - X
£7°f ave
Xave = (Xa + an)/Z = Xa(l + u) (23)
_exp(—ZkaS)/[1+exp(—2kas)]
u = (24)

exp(—Zkas)/[l—exp(-Zkas)]

In arriving at (23), only one term of the order u2
in the denominator had been neglected. In view of
(24), such a term is exponentially small, if the
separation between the two constituent waveguides,
s, is sufficiently large. X is the average
reactance of the two regionms, %hove and below the
waveguide. The approximate dispersion relation,
(22), is recognized to be in the same form as that
for the simplest dielectric waveguide consisting
of a single dielectric layer in a wuniform
environment. A physical interpretation of such an
approximation can be given as follows: The
original directional coupler consisting of two
identical waveguides possesses the reflection
symmetry, but the bisected sub-structures with one
waveguide and the boundary condition of electric
or magnetic conductuor at the bisection plane on
longer possess the symmetry. Since the fields are
evanescent in the air regions, the effect of the
boundary at the bisection plane is small, if the
separation between the two waveguides is
sufficiently large. 1In the derivations from (20)
to (22), each bisected structure is replaced by a
simpler waveguide consisting of a simple
dielectric layer in an unbound uniform environment
with a modified reactance which is equal to the
average reactance given by (23). In do so, we
retain the first order effect of the boundary
condition at the bisection plane. It is noted
that as far as the dispersion relations are
concerned, the only difference between the two
bisections is contained in the expressions for u,
as given in (24). Thus, the characteristics of
the directional coupler can now be analyzed
conveniently in terms of such a single quantity.

By using the formula for the double angle of
the tangent function, the dispersion relation,
(22), can be splitted into two simpler ones, as:

X /z

ave' “f (25)

tan(kftf/z)

-X

t(k =
cot( ftf/z) ave

/¢ (26)

which are recognized as the dispersion relations
for short-circuit and open-circuit bisections of



the single dielectric waveguide with the average
reactance for the surounding the space. The
apperance of X accounts for the effect of
coupling between the two constituent waveguides.
For the case of weak coupling, X deviates only
slightly from X , and the ef£6CE of the small
deviation can be“treated easily by a perturbation
procedure, In doing so, we obtained the
dispersion roots for the two bisected structures,
and the difference in effective dielectric
constants of the symmetric and antisymmetric modes
of the directional coupler is given by:

22
P q exp(-2gs)
-G an

k§a2(1+u)

Such an expression can be easily calculated; more
importantly, it exhibits the effect of the
structure parameters explicitly through the
parameters p, q and a, as defined by (2), (3), and
(). For example, p is very small at a high
frequency and q at a low frequency. In these two
extreme cases, the difference in the effective
dielectric constants given by (27) is very small.
Therefore, it is expected that an optimum coupling
between the two constituent waveguides will occur
at an intermediate frequency and this formula
provides a simple criterion for practical design
purpose.
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Fig.1l. Dielectric layer in uniform environment
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Fig. 2. Bisected directional coupler and its
equivalent circuit.



