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We present here a set of simple analytic

formulas for determining the propagation

characteristics of multilayer dielectric

structures. These formulas are particularly

useful for computer-aided design of dielectric

waveguides.

I. Introduction

Dielectric waveguides have been investigated

for the design of circuit components and devices

at high frequencies, particularly at millimeter

wave and optical frequencies. Basic wave
phenomena associated with this class of waveguides

have heen well known and extensive numerical data

are available in the literature[l–4]. However,
because of mathematical difficulties in dealing
with transcendental dispersion relations, the
design of dielectric waveguides has to rely on

numerical procedures. Such an approach is time
consuming and does not provide direct physical

understanding of wave phenomena involved. The
recent resurgence of interest in integrated optics

has pushed the need of dielectric waveguides in a

large scale, and efficient algorithms for the

development of software for computer-aided design

are in demand. In this work we present a set of
simple analytic formulas for planar, multilayer

dielectric waveguides. Such a class of structure
is of practical importance on its own right; more

importantly, it also serves as a building block
for the analysis more complicated waveguide
structures.

A single dielectric layer in an uniform

environment is the simplest structure to be used

as a dielectric waveguide. We observed that the

dispersion relations for both TE and TM modes

suported by this simple structure can be cast in a

new form that is particularly simple and useful

for mathematical and physical interpretations of

the surface waves. Therefore, we choose the

formulation of this simple structure as a building

block for the analysis of more general dielectric

waveguides. This new method of analysis is
briefly reviewed first. The results are then

applied to the analysis and design of practically
interesting components and devices. For
simplicity, we restrict ourself here to the

fundamental TE mode; the results for the other

modes are similar but slightly more complicated.

11. New Method of Analysis

Consider a dielectric waveguide consisting of

a single dielectric surrounded by a uniform

medium, as shown in Fig. 1. The layer has a

dielectric constant Cf and thickness tf and the

surrounding has a dielectric constant ~ . The

dielectric constants, cf and Ca, are both $?eal and
positive, with Cf > {a. Furhtermore, the time
variation of the form, exp(jmt), is implicitly

assumed throughout this work.

The dispersion relations for such a waveguide
structure are well known; they are usually

expressed in terms of the tangent or cotangent

functions. For the fundamental TE mode, we have:

q = p tan(p) (1)

where the variables p and q are defined as:

~llz
P = ko(tf/2)(c

f - ~eff
(2)

1/2
q = ko(tf/2)(~eff - Ea) (3)

c = (kx/ko)2
eff

(4)

Here, p is the transverse wavenumber in the

dielectric layer, q is the transverse decay

constant in the air region, k is the free-space

wavenumber, and c ?is the e fective dielectric
.eff

constant which 1s related to the surface-wave

propagation constant, kx, by (3) and (4). For the

waveguide problem, the effective dielectric is the

most important quantity to be determined, and it

can be obtained from p or q via (2) or (3),

respectively, if either one of them is known. It
is noted that p and q satisfy the equation:

p2+q2=a2 (5)

With

a = ko(tf/2)(~f-ca)l’2 (6)

Eq.(5) represents a circle of radius a which is
commonly refered to as the normalized frequency.

In the past, (1) and (5) are considered as a set
of coupled nonlinear equations to determine the

values for p and q, for a given normalized

frequency a. Graphically, the admissive values of

p are determined by the intersections a set of
modified tangent curves and a circle.
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It waa ahown that (1) and (5) can be combined

to yield a new form of dispersion relation as:

a cos(p) = p (7)

where a is the normalized frequency defined by

(6). Such a new dispersion relations had been

obtained, but they were used only as an auxiliary

equation[4]. Because it is simpler in form and

offers many advantages over the old one, we shall

use it as the basis of the analysis of surface

waves, as illustrated below.

Geometrically, the roots of the new dispersion

relation, (7), may be interpreted as the
intersections of a cosine curve and a straight

line. To locate the roota, we have developed a

geometrical iteration procedure that are

monotonically and rapidly convergent. First of

all, the frequency spectrum is divided into two

regions, with the normalized dividing frequency

given by:

ad
= ?T/2 - 1 (8)

Specifically, a < a defines the low-frequency

region, and a > ad %efines the high-frequency

region. For the iteration procedure, the initial

point or the zeroth-order result is chosen as:

eo=pa=aj for a < pd (9)

ma

Po=Pb= .— for a > ad (lo)

2 a+l’

For a given structure and at a given

frequency, the initial point by either one of the

last two formulas is very easy to determine. With

such an initial point fixed, the first-order

result is obtained from the iteration formula, as:

Cos(po) + posin(po)

Pn =a (11)
1 + a sin(po)

fn = pnla (12)

The expression for P given by (11) is the result
of the first iterat~on and f is then determined
from (12), if needed. When anmore accurate result

is desired, the “old” valuea, P. and fo, maY be

replaced by the “new” values, Pn and fn, and the
process may be repeated until a desired degree of

accuracy ia achieved. This iteration process will

be particularly useful for the purpose of

laboratory design using a hand-held calculator.

As an illustration of the usefulness of the
present approach, we determine here the frequency

range for the operation of a single TE mode. The

first higher TE mode begins to propagate at the

normalized frequency: a = ~/2. From (12), We

have: PO = p = 0.9598. Substituting such a value

of p Into ?11), we obtain a more accurate value

for ?he dispersion root: pn = 0.9341~ as compared

to the exact value of p = 0.9340. Thus, the
frequency range of single mode-operation is given

by:

o < p < 0.934 (13)

In terms of the effective dielectric constant,

(13) translates into:

ea < Eeff < 0.64cf + 0.36ca (14)

which defines the lower and upper

effective dielectric constant for

mode, with all other higher modes

These upper and lower bounda hold

the symmetric dielectric waveguide,

the waveguide parameters.

bounda of the

the lowest TE

below cutoff.

generally for

regardless of

III. Application to waveguide modulator

A waveguide modulator consists of waveguiding
layer that is made of an electro–optical or
acouato-optical material[6]. The dielectric
constant of the layer can be externally controlled
to influence the phase of a guided wave. Of the
most practical interest is the sensitivity factor

of a waveguide modulator, which is defined as:

dn
‘f

dc
effe,= eff— ..— (15)

dnf n d~f
eff

The last expression in terms of the product of two
factors was obtained by using the square
relationship between a dielectric constant and the

corresponding index of refraction. Between the
two factors above, the former is bounded by:

1<
><>

(16)
n

‘eff a

Furthermore, taking the chain differentiations

(l), (4), and (10), we obtain the derivative:

dc
eff

CoS*(p)
g= —=1- (17)

d~ . 1 + rI tan(u)

on

Kere, the va~ue of p varies from O for a very low

frequency to n/2 for a very high frequency.

Evidently from the last equation, the factor g is

bounded by:

O<g<l (18)

Combining (15)-(18), we have the sensitivity
factor, a, bounded by:

O < s C nf/na (19)

These results have been previously demonstrated by
meana of numerical examples[6]. With the present
approach, the sensitivity factor can now be
conveniently investigated analytically.

IV. Design of uniform directional couplers

A directional coupler usually consists of two
identical constituent waveguides in a uniform
environment. The layers have the dielectric
constant c thickness
separation ~ett%n ~~~ two waveguid~f}s ~d S~~~
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a structure may be viewed as a composite waveguide

and the coupling of energy between the two

constituent waveguides can be interpreted as a

result of interference among the modes supported

by the composite structure. In practice, the

directional coupler is designed such that each

constituent waveguide supports only the lowest
mode, and the composite structure supports the two
lowest modes with opposite symmetries in field

distribution. Thus , the key step to the analysis

of the directional coupler is the determination of

the propagation constants of the modes supported

by the directional coupler as a composite

waveguide structure. Here, we derive a set of
new, though approximate, dispersion relations

which are particularly useful for the study of

directional couplers.

The directional coupler as a whole is
symmetric with respect to the plane z = O. Such a
structure may be analyzed in terms of two bisected
sub-structures, as shown in Fig. 2, together with

their network representations. In other words,
the modes supported by such a composite waveguide

structure have either symmetric or antisymmetric

electric-field distribution. For practical

applications, the directional coupler is designed

such that each basic waveguides suppots only the
lowest mode, and the composite structure will

support the two lowest modes, one with a symmetric
electric-field distribution and the other with an

antisymmetric distribution. The coupling of
energy between the two basic waveguides forming

the directional coupler may be interpretted as the
interference of the two modes of the composite

structure. Thus , the key step to the analysis of
the directional coupler is the determination of

the propagation constants of the modes supported

by the composite structure.

By using the transverse-resonance technique,

the dispersion relation is written as:

Zf(xa + Xdn)
tan(k=t) = - (20),

‘fzf
- Xaxdn

where Z is the wave impedance of the layer, Xa is

the wav$? reactance of the air region, and X

the input reactance looking down at the Q:W::

interface of the dielectric layer and is given by:

1Xatan(kas), for SC bisection

‘dn =
(21)

Xacot(kas), for OC bisection

The dispersion relation, (20), determines the

effective dielectric constants, <
directional coupler. +?’ “’”theWith the two di erent Input

reactance in (21), (20) will yield the effective
dielectric constants for the symmetric and

antisymmetric modes. Under the most general

condition, the roots of such a dispersion relation

can be determined by numerical methods, and the

coupling characteristics of the structure can then

be analyzed.

For practical design purposes, it is desirable
to have explicit formulas for the dispersion

roots, particularly, for a nonuniform direction
coupler, including the transition regions at the

input and output ports. Based on the exact
dispersion relation, (20), we present here an

approximate method of analyais that will yield the
desired reults. The method is algebrac in nature,
and is facilitated by a new method of analysis for

the basic waveguide consisting of a single
dielectric layer in a uniform environment, as

described below.

We observe that (20) can be approximated by:

2zfxave
tan(kft) =

2
‘fzf - ‘ave

x
av e

~.

In arriv

(Xa+xdn)n = Xa(l + u)

(22)

(23)

.exp(-2kas)/ [l+exp(-2kas)

(24)
exp(-2kas)/ [1-exp(-2kas)

J at (23), only one term of the order U2
in the denominator had been neglected. In view of

(24), such a term is exponentially small, if the
separation between the two constituent waveguides,

s, is sufficiently large. Xa e is the avera;ge

Lreactance of the two regions, a ove and below the

waveguide. The approximate dispersion relation,

(22), is recognized to be in the same form as that
for the simplest dielectric waveguide consisting

of a single dielectric layer in a uniform
environment. A physical interpretation of such an
approximation can be given as follows: The
original directional coupler consisting of two
identical waveguides possesses the reflection

svmetry, but the bisected sub-structures with one
waveguide and the boundary condition of electric

or magnetic conductor at the bisection plane on

longer possess the symmetry. Since the fields are
evanescent in the air regions, the effect of the

boundary at the bisection plane is small, if the

separation between the two waveguides is
sufficiently large. In the derivations from (20)
to (22), each bisected structure is replaced by a

simpler waveguide consisting of a simple
dielectric layer in an unbound uniform environment

with a modified reactance which is equal to the

average reactance given by (23). In do so, we
retain the first order effect of the boundary

condition at the bisection plane. It is noted
that as far as the dispersion relations are
concerned, the only difference between the two
bisections is contained in the expressions for u,

as given in (24). Thus , the characteristics of
the directional coupler can now be analyzed
conveniently in terms of such a single quantity.

By using the formula for the double angle of
the tangent function, the dispersion relation,

(22), can be splitted into two simpler ones, as:

tan(kftf/2) = Xave/Zf (25)

(26)
cot(kftf/2) = ‘Xave/zf

which are recognized as the dispersion relations
for short-circuit and open-circuit bisections of
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the single dielectric waveguide with the average

reactance for the surrounding the space. The

apperance of X accounts for the effect of

coupling betweenavt?he two constituent waveguides.

For the case of weak coupling, X deviates only

slightly from Xa, and the effea~~ of the small

deviation can be treated easily by a perturbation

procedure. In doing so, we obtained the

dispersion roots for the two bisected structures,

and the difference in effective dielectric

constants of the symmetric and antisymmetric modes

of the directional coupler is given by:

(s) (0) =
p2q2exp(-2qs)

Ceff - ceff
(27)

k~a2(l+u)

T’
‘f

Jk

&a
Such an expression can be easily calculated; more
importantly, it exhibits the effect of the

structure parameters explicitly through the

parameters P, q and a, aa defined by (2), (3), and
(6). For example, p is very small at a high

frequency and q at a low frequency. In these two Fig.1. Dielectric layer In uniform environment

extreme cases, the difference in the effective

dielectric constants given by (27) is very small.

Therefore, it is expected that an optimum coupling

between the two constituent waveguides will occur

at an intermediate frequency and this formula

provides a simple criterion for practical design

purpose. E
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